1. 搜索熱:tofd 管道焊接
                    掃一掃 加微信
                    首頁 > 期刊論文 > 論文摘要
                    晶粒尺寸對IF鋼低周疲勞行為及疲勞后顯微組織的影響
                              
                    Effect of Grain Size on Low Cycle Fatigue Behavior and Microstructure after Fatigue of IF Steel

                    摘    要
                    通過850,950 ℃退火制備得到平均晶粒尺寸分別為40,210 μm的IF鋼,研究了晶粒尺寸對其低周疲勞行為和疲勞后顯微組織的影響。結果表明:在疲勞循環過程中,細晶試驗鋼的初始平均峰值應力高于粗晶試驗鋼,隨著循環次數增加,2種試驗鋼的平均峰值應力趨于相近;細晶試驗鋼始終表現為循環加工硬化,粗晶試驗鋼表現為初始循環硬化、循環飽和和二次循環硬化。經400周次疲勞循環后,細晶試驗鋼的顯微組織由尺寸相近且分布均勻的位錯胞組成,粗晶試驗鋼的顯微組織主要由宏觀駐留滑移帶(Macro-PSB)和位錯胞組成,Macro-PSB中包含較為細小的位錯胞;粗晶試驗鋼具有較高的位錯密度及相對顯著的組織不均勻性。
                    標    簽 IF鋼   晶粒尺寸   顯微組織   低周疲勞行為   IF steel   grain size   microstructure   low cycle fatigue behaviour  
                     
                    Abstract
                    IF steels with average grain size of 40 μm and 210 μm were prepared by annealing at 850 ℃ and 950 ℃, respectively. The effects of the grain size on the low-cycle fatigue behavior and the microstructure after fatigue were investigated. The results show that during fatigue cycle, the initial average peak stress of the fine-grained test steel was higher than that of the coarse-grained test steel. The average peak stress of the two test steels tended to be equal with increasing number of cycles. The fine-grained test steel always showed cyclic work hardening during fatigue, while the coarse-grained test steel showed initial cycle hardening, cycle saturation and secondary cycle hardening. After 400 fatigue cycles, the microstructure of the fine-grained test steel was composed of similarly sized and uniformly distributed dislocation cells, while the microstructure of the coarse-grained test steel was mainly composed of macro-persistent slip band (Macro-PSB) and dislocation cells. The Macro-PSB contained relatively small dislocation cells. The coarse-grained test steel had higher dislocation density and relatively significant structural heterogeneity.

                    中圖分類號 TG142.1   DOI 10.11973/jxgccl202308004

                     
                      中國光學期刊網論文下載說明


                    所屬欄目 試驗研究

                    基金項目 上海市中央引導地方科技發展資金資助項目(YDZX20213100003222)

                    收稿日期 2022/3/31

                    修改稿日期 2023/4/27

                    網絡出版日期

                    作者單位點擊查看

                    備注魏晨羲(1996-),男,安徽亳州人,碩士研究生 導師:楊旗正高級工程師

                    引用該論文: WEI Chenxi,LI Kai,YANG Weitao,ZHU Xiangrong,YANG Qi. Effect of Grain Size on Low Cycle Fatigue Behavior and Microstructure after Fatigue of IF Steel[J]. Materials for mechancial engineering, 2023, 47(8): 23~28
                    魏晨羲,李凱,楊蔚濤,祝向榮,楊旗. 晶粒尺寸對IF鋼低周疲勞行為及疲勞后顯微組織的影響[J]. 機械工程材料, 2023, 47(8): 23~28


                    論文評價
                    共有人對該論文發表了看法,其中:
                    人認為該論文很差
                    人認為該論文較差
                    人認為該論文一般
                    人認為該論文較好
                    人認為該論文很好
                    分享論文
                    分享到新浪微博 分享到騰訊微博 分享到人人網 分享到 Google Reader 分享到百度搜藏分享到Twitter

                    參考文獻
                    【1】宋鳳明,溫東輝,李自剛,等.低屈服點鋼的發展及應用[J].熱加工工藝,2008,37(6):85-88. SONG F M,WEN D H,LI Z G,et al.Application and development of low yield point steel[J].Hot Working Technology,2008,37(6):85-88.
                     
                    【2】SAEKI E,SUGISAWA M,YAMAGUCHI T,et al.Mechanical properties of low yield point steels[J].Journal of Materials in Civil Engineering,1998,10(3):143-152.
                     
                    【3】THOMPSON A W,BACKOFEN W A.The effect of grain size on fatigue[J].Acta Metallurgica,1971,19(7):597-606.
                     
                    【4】HANLON T,KWON Y N,SURESH S.Grain size effects on the fatigue response of nanocrystalline metals[J].Scripta Materialia,2003,49(7):675-680.
                     
                    【5】LAWSON L,CHEN E Y,MESHII M.Near-threshold fatigue:A review[J].International Journal of Fatigue,1999,21:15-34.
                     
                    【6】MUÑOZ J A,HIGUERA O F,CABRERA J M.High cycle fatigue of ARMCO iron severely deformed by ECAP[J].Materials Science and Engineering:A,2017,681:85-96.
                     
                    【7】KOBAYASHI S,YANG W T,TOMOBE Y,et al.Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel[J].Journal of Materials Science,2020,55(22):9273-9285.
                     
                    【8】ROLIM LOPES L C,CHARLIER J.Effect of grain size and intergranular stresses on the cyclic behaviour of a ferritic steel[J].Materials Science and Engineering:A,1993,169(1/2):67-77.
                     
                    【9】SAWAI T, MATSUOKA S, TSUZAKI K. Low- and high-cycle fatigue properties of ultrafine-grained low carbon steels[J]. Tetsu-to-Hagane, 2003, 89(6): 726-733.
                     
                    【10】MAGNIN T,RAMADE C,LEPINOUX J,et al.Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals:Homologous behaviour?[J].Materials Science and Engineering:A,1989,118:41-51.
                     
                    【11】SANGID M D.The physics of fatigue crack initiation[J].International Journal of Fatigue,2013,57:58-72.
                     
                    【12】STANZL-TSCHEGG S,SCHÖNBAUER B.Near-threshold fatigue crack propagation and internal cracks in steel[J].Procedia Engineering,2010,2(1):1547-1555.
                     
                    【13】SHIH C C,HO N J,HUANG H L.Dislocation evolution in interstitial-free steel during fatigue near the endurance limit[J].Journal of Materials Science,2010,45(3):818-823.
                     
                    【14】SHIH C C,HO N J,HUANG H L.The study of fatigue behaviors and dislocation structures in interstitial-free steel[J].Metallurgical and Materials Transactions A,2010,41(8):1995-2001.
                     
                    【15】SHIH C C,YEH D H,HO N J,et al.The study of crack-propagation behaviors and dislocation structures in cyclically deformed polycrystalline IF steel[J].Materials Science and Engineering:A,2011,528(21):6381-6386.
                     
                    【16】KUMAGAI M,YOKOYAMA R.Characterization of microstructures by X-ray diffraction line profile analysis[J].Journal of the Society of Materials Science,Japan,2020,69(3):277-283.
                     
                    【17】TAKEBAYASHI S,KUNIEDA T,YOSHINAGA N,et al.Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods[J].ISIJ International,2010,50(6):875-882.
                     
                    【18】MASUMURA T,URANAKA S,MATSUDA K,et al.Analysis of dislocation density by direct-fitting/modified Williamson-Hall (DF/mWH) method in tempered low-carbon martensitic steel[J].Tetsu-to-Hagane,2020,106(11):826-834.
                     
                    【19】SHINTANI T,MURATA Y.Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction[J].Acta Materialia,2011,59(11):4314-4322.
                     
                    【20】POLÁK J,DEGALLAIX S,DEGALLAIX G.The role of cyclic slip localization in fatigue damage of materials[J].Le Journal De Physique IV,1993,3:679-684.
                     
                    【21】JOHNSTON T L,FELTNER C E.Grain size effects in the strain hardening of polycrystals[J].Metallurgical and Materials Transactions B,1970,1(5):1161-1167.
                     
                    【22】GREULICH F,MURR L E.Effect of grain size,dislocation cell size and deformation twin spacing on the residual strengthening of shock-loaded nickel[J].Materials Science and Engineering,1979,39(1):81-93.
                     
                    【23】CUDDY J,NABIL BASSIM M.Study of dislocation cell structures from uniaxial deformation of AISI 4340 steel[J].Materials Science and Engineering:A,1989,113:421-429.
                     
                    【24】DODARAN M,KHONSARI M M,SHAO S.Critical operating stress of persistent slip bands in Cu[J].Computational Materials Science,2019,165:114-120.
                     
                    相關信息
                       標題 相關頻次
                     晶粒尺寸對低層錯能Fe-Mn-Si-Al奧氏體合金鋼準靜態力學性能的影響
                     6
                     電子背散射衍射技術在IF鋼再結晶形核研究中的應用
                     4
                     汽車防震器外筒開裂原因
                     3
                     鐵素體區軋制IF鋼試生產實踐
                     3
                     06Cr19Ni10不銹鋼/A283低碳鋼擴散焊接接頭的顯微組織和力學性能
                     2
                     06Cr20Ni11鋼埋弧焊焊縫的顯微組織和性能
                     2
                     1000-3738(2007)02-0009-04
                     2
                     102鋼的顯微組織形態與室溫力學性能的關系
                     2
                     10Ni5CrMoV鋼MAG焊接接頭的顯微組織與力學性能
                     2
                     12Cr13鋼預熱處理工藝參數優化
                     2
                     12Cr1MoV鋼管在長時服役后組織及拉伸性能的退化
                     2
                     12Cr1MoV鋼過熱器爆管的顯微組織和力學性能
                     2
                     13MnNiMoNbR與00Cr19Ni10異種鋼焊接接頭的組織與性能
                     2
                     15CrMo鋼和12Cr1MoV鋼的快速金相制樣方法
                     2
                     16MND5/309L/308L/Z2CND18-12N異種金屬焊接件的組織和性能
                     2
                     16Mn鋼鏈板斷裂分析
                     2
                     16Mo3鋼大直徑大變形量試制中頻彎管的組織與性能
                     2
                     1Cr17不銹鋼表面TIG冷焊重熔和絲材熔敷工藝及改性層的組織和性能
                     2
                     1Cr18Ni9Ti不銹鋼脈沖超窄間隙焊接頭的組織及耐腐蝕性能
                     2
                     2024鋁合金電子束焊接接頭的顯微組織與力學性能
                     2
                     20Cr1Mo1VTiB鋼的連續冷卻轉變行為
                     2
                     20CrMnTi齒輪鋼棒材控軋控冷工藝的優化
                     2
                     20MnCr5鋼齒輪表面滲碳層的顯微組織
                     2
                     220 kV斷路器用彈簧異常開裂失效分析
                     2
                     2205雙相不銹鋼電解腐蝕新方法
                     2
                     22MnB5鋼三種熱沖壓成形件的冷彎性能
                     2
                     240 MPa級高強IF鋼的冷軋壓下率和退火溫度
                     2
                     2507雙相不銹鋼模擬焊接熱影響區的組織與性能
                     2
                     2A12鋁合金噴射沉積坯的形狀控制及顯微組織
                     2
                     2Cr13鋼激光表面合金化的組織和性能分析
                     2
                    日本乱人伦中文字幕三区,亚洲激情无码一区二区三区,免费av无码不卡在线观看,国产在线视精品在一区二区